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Abstract Single-molecule data often show step-like

changes in the quantity measured between constant levels.

Analysis of this data consists of detecting the steps, i.e.,

change point detection (CPD), and determining the levels,

i.e., clustering. We describe a novel algorithm which

integrates these two analyses, based on a statistical test of a

normal distribution. The test of normality (TON) algorithm

integrates statistical CPD with gaussian mixture model

clustering. We used TON with both simulated data and ion

channel patch-clamp recordings. It performed well with

simulated data except at a high signal-to-noise ratio and

when the frequency of steps was high compared to the

sampling frequency. TON has advantages over separate

CPD and mixture modeling algorithms, especially for

complex single-molecule data. This was illustrated by its

application to the maxichannel, an ion channel with mul-

tiple subconductance states.

Keywords Mixture model � Cluster analysis � Change

point detection � Ion channel � Single molecule

Introduction

A large number of techniques exist for recording single

molecules. Examples include force measurements, such as

optical tweezers and atomic force microscopy (Carter and

Cross 2005; Mejia et al. 2008); electrical recordings of ion

channels; electrical recording of non-ion channels (Choi

et al. 2012); single-molecule fluorescence resonance

energy transfer; and natural radiative emission (Frantsuzov

et al. 2008; Kruger et al. 2011). Such recordings often show

step-like changes in the measured quantity, intervening

between periods where the quantity is near constant except

for noise. The latter stationary periods (SPs) correspond to

stable conformational states of the molecule with a step or

change point (CP) corresponding to the rapid transition

from one state to another. Often, the molecule appears to

have a limited number of states as the SPs occur at only a

few, consistent amplitudes or levels. The object of analysis

is to understand and model the kinetics of the molecule,

and to this end measurements must be made of the timing

of CPs, the length and amplitude of SPs and the amplitude

of levels. Algorithms for this are divided into those that

detect CPs, change point detectors (CPDs), and those that

determine levels, clustering algorithms (CAs).

Cluster analysis is the division of a set of objects into

subsets or clusters. In the case of a single-molecule

recording, the objects are the amplitude values (samples) of

the recording and each cluster is a level. Cluster analysis is

a huge field with wide application, so there is a corre-

spondingly diverse menagerie of CAs; but most can be

assigned to one of two clusters, hierarchical and optimi-

zation CAs (following Everitt 1980; Theodoridis and

Koutroumbas 2009). In hierarchical CAs, clustering is

performed iteratively to produce a tree-like hierarchy of

clusters, with each cluster at a branching point. In divisive

clustering all objects are first assigned to a single cluster,

then this cluster is divided into two, these two into four and

so on until each cluster contains one object. In agglomer-

ative clustering the reverse occurs. The choice of how to

divide or agglomerate is based on interobject distances.

The tree hierarchy makes hierarchical clustering a natural

approach in phylogenetics. Applied to single molecules it
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can model a molecule with a hierarchy of conformational

states, but as yet this idea has had only theoretical appli-

cation and computer simulation (Frauenfelder 2010; Frau-

enfelder et al. 1988; Torda and Vangunsteren 1994). In

optimization CAs the number of clusters is chosen a priori

and the task of the algorithm is to partition the objects so

that some statistical measure of the resulting clusters is

either maximized or minimized. In mixture modeling this

measure is the fit of each cluster to a particular distribution,

the data as a whole being modeled as a mixture of distri-

butions. For example, in a gaussian mixture model each

cluster should approximate a gaussian distribution. This is

the most common cluster analysis for single-molecule

recordings as each level (cluster) is modeled as a single

amplitude contaminated with gaussian-distributed noise.

CPDs detect sudden changes in a signal. In the case of a

single-molecule recording, this is the step change in

amplitude. Of course, by detecting CPs, all CPDs also

detect SPs (what is not a CP is an SP). Most CPD algo-

rithms are of four classes: cumulative sum, window sta-

tistics, amplitude threshold and derivative threshold. In the

first, level amplitudes must be known already and the

algorithm uses this information to detect departures from

these levels (Basseville and Benveniste 1980; Basseville

1988; Draber and Schultze 1994; Schultze and Draber

1993). The best known is the Page-Hinkley detector.

Window statistic algorithms scan a window of samples

across the recording, calculating a statistical property of

that window. A sudden change in that statistic will indicate

a CP. In some cases the statistic can be expressed as a

probability (p value) of the null hypothesis that there has

been no change, for example, Cochrane’s test or Welch’s

t test (Carter et al. 2008; Carter and Cross 2005; Cochrane

1954; Moghaddamjoo 1988; Pastushenko and Schindler

1997; Riessner et al. 2002; Welch 1947). For others a

somewhat more heuristic threshold must be used (Carter

et al. 2008; Patlak 1988, 1993; Thompson et al. 2002). This

is the case with amplitude and derivative threshold meth-

ods based on the amplitude or time derivative of the

recording crossing some threshold value (Tyerman et al.

1992; VanDongen 1996).

Clustering and CPD algorithms can be coupled in series

to produce a complete analysis of a single-molecule

recording. For instance, the levels found by clustering can

be used to direct a cumulative sum CPD. Or the mean

amplitudes of SPs found by CPD can be clustered instead

of individual sample amplitudes. However, there are no

algorithms which combine CPD and clustering in one. We

describe a novel algorithm that integrates a statistical CPD

with gaussian mixture modeling. The algorithm is based on

the Jarque-Bera statistic for a gaussian (normal) distribu-

tion, and as such, we call it the test of normality (TON)

algorithm. The TON algorithm performed quite well with

both simulated data and real ion channel recordings and has

some advantages over separate mixture modeling and CPD

algorithms.

Methods

TON Algorithm: General Principle

The general principle of the TON algorithm is to scan

through a record, agglomerating into a level samples that

form a single normal distribution. A level is initiated by

searching for a contiguous set of samples with (1) number of

samples = NT(initiating), (2) SD (r) \rT and (3) probability

of non-normality (q) \ qT (see below for definition of q).

Such a set constitutes an initiating SP (Fig. 1). The level

is then extended by scanning through the rest of the record

for further sets of contiguous samples (‘‘extending SPs,’’

Fig. 1) with (1) a minimum length in ms, LT(extending); (2) r
for the level (all SPs, up to and including the pres-

ent) \rT; and (3) q for the level (all SPs, up to and

including the present) \ qT. r and q are calculated with the

addition of each sample to an extending SP. When either

rises above threshold, the extending SP is terminated. This

is the CPD aspect of the algorithm. If the extending SP’s

length is above LT(extending), it is included in the level. If its

length is below LT(extending), it is not included in the level

(r and q, being returned to their prior values).

Extending SPs are added to the level until the algorithm

reaches the end of the record. The properties of the level

(mean, SD) are then recorded. The processes of initiation

and extension are then repeated from the start of the record

to find further levels. As each level is initiated and exten-

ded its samples are marked and subsequent level searches

ignore these marked samples. This prevents levels from

overlapping and provides a mechanism for the algorithm to

stop, when a level search cannot find an initiating SP.

To distinguish between levels found by the algorithm

and levels of a simulated molecule (the algorithm not being

perfect), we use the terms ‘‘algorithm level’’ and ‘‘molecule

level’’ from here on.

TON Algorithm: Input Parameter Selection

The values for the four input parameters were chosen as

follows.

1. NT(initiating): this needed to be large enough so that the

initiating SP, if it was normally distributed, was

asymptotic to a normal distribution. For default we

used what we thought was a comfortable value of 200.

However, in some cases, where a figure of 200 samples

was larger than the lifetime of an SP, we used 50.
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2. LT(extending): by default this was set to the equivalent of

NT(initiating) (LT(extending) = NT(initiating)/sampling rate);

i.e., 20 ms at a sampling rate of 10 kHz. As with

NT(initiating), smaller values were used for recordings

with faster kinetics.

3. rT: for records with high noise or fast kinetics

(timescales \NT(initiating)) rT was important as an

initiating SP with an apparently normal distribution

(passing qT) might actually cover more than one

molecule level. The algorithm level will then initiate

midway between molecule levels. rT, set to a value

just above the r of the record’s background noise,

prevents this. For simulated data rT was set according

to the value of rnoise (see below). For patch-clamp ion

channel data rT was somewhat above the amplifier

meter reading of root-mean-square noise (0.5–0.6 pA).

4. qT: this was set to 0.95 for all data, a value which

seemed appropriate according to the results in Fig. 2.

The Jarque–Bera Test for Normality

The central crux of the TON algorithm is a test of normality.

We used one of the simplest tests for a normal distribution,

the Jarque–Bera statistic (Jarque and Bera 1987),

J ¼ n
l2

3

6
þ l4 � 3ð Þ2

24

" #
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Mp

M
p=2
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Xn
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where J is the Jarque–Bera statistic, n is the number of

samples, xi is the ith sample, mp is the pth order moment, Mp

is the pth order central moment and lp is the pth order

standardized moment. J has an approximately v2 distribution

with two degrees of freedom, so the probability of a non-

normal distribution is calculated as

q ¼ 1� Cð1; 0:5JÞ

where q is the probability of non-normality and C is the

upper incomplete gamma function.

To assess the ability of the Jarque–Bera statistic to

detect a CP, a simulation was made. Random numbers

were generated with a gaussian distribution of zero mean

and constant SD (r). With the addition of each number to

the set, J and q were calculated for the set. Once the set

reached 500 numbers in size, to each subsequent number a

value (dI) was added, simulating a change in level at

n = 500. The change in level gave a large increase in J,

followed by a U-shaped relaxation (Fig. 2a). This transient

in J decreased as the ratio of dI to r decreased. Below a dI/

LEVEL 2

LEVEL 1

= initiating SP

= extending SP

Fig. 1 The TON algorithm.

Each level is constructed first by

finding an initiating SP, a

contiguous set of normal

samples of length NT(initiating).

The level is then added to with

extending SPs, further sets of

samples which, when added to

the level, do not produce a non-

normal distribution

J

N

J

a

b

= 1.0
= 1.5

= 2.5

= 0.5

= 4.5

N = 500, I = 5.0

Fig. 2 Illustration of the Jarque–Bera TON. A set of pseudorandom

numbers was generated with a gaussian distribution of zero mean and

set SD (r). The Jarque–Bera statistic (J) and probability of non-

normality (q) were calculated after the addition of each number. After

500 numbers had been added, each subsequent number was increased

by 5. a Plot of J as a function of set size (N), with different values of

r. b Plot of q as a function of J for all of the data in a
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r of 2, a transient in J was not apparent. q was a steep

function of J (Fig. 2b), increasing greatest at values

between 1 and 10, which appeared to be the range of the

transient increase in J.

Single-Pass, Online Moment Calculation

Traditional algorithms to calculate central moments can be

described as ‘‘offline’’ and ‘‘double pass.’’ Double pass

means that the data have to be passed through twice, first to

calculate the mean (m1) and second to calculate the central

moment. Offline means that if we want to add a sample to

the data and then recalculate the moments for this larger

data set (as in extending a level), we need to repeat this

double pass though all the samples (the moments are cal-

culated from scratch). The latter is very computationally

expensive and would give an impossibly slow algorithm.

Luckily there is a method to calculate central moments that

is online—to recalculate moments with addition of a new

sample requires only the old moments and the value of the

new sample. This was first derived for the general case (for

any order of moment) by Pebay (2008)
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where Mp is the pth-order unnormalized central moment,

Mp,n is the pth-order unnormalized moment of the set of

n samples, xn is the value of the nth sample and m1,n is the

mean of the set of n samples.

Histogram Data Display

The TON algorithm outputs a set of probability densities

(pds) for each record analyzed. The first pd is a histogram

of all the samples in the record, normalized to an area of

one

pR að Þ ¼
XnR

i

1= nRDbinð Þ aþ 0:5Dbin [ xi [ a� 0:5Dbin

0 else

�

where pR(a) is the pd of recording sample amplitudes (a), nR

is the total number of samples and Dbin is the bin size (0.01

unless otherwise stated). Other pds are ‘‘reconstructed’’ from

the algorithm levels. From the TON we know that the

samples of each algorithm level are normally distributed.

Therefore, from the mean (lA), SD (rA) and number of

samples (nA) of each algorithm level we can reconstruct their

pd for comparison with pR(a)

pA;RðaÞ ¼
XNA

i
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where NA is the number of algorithm levels and fA is the

fraction of time spent in a level.

Data Simulation

Single-molecule recordings were simulated with NC num-

ber of levels. With NC [ 1 uniformly distributed random

integers between 1 and NC were used for the number of

levels stepped during a CP. Exponentially distributed ran-

dom numbers were used for SP lengths

p tð Þ ¼ 1

sSP

exp �t=sSPð Þ

where p(t) is the probability of an SP of length t and sSP is

the mean SP length. Gaussian noise with a SD rnoise was

added, and then the record was filtered with an eighth-order

Bessel low-pass filter with a cutoff of 0.5 kHz (with a

sampling rate of 10 kHz).

Computation

All data simulations and analyses were carried out with

programs written in C??, using the Dev-C?? IDE. All

code is freely available from the author upon request.

Results

Simulated Data: Signal to Noise Ratio

We first tested the TON algorithm with a simulated two-

level record. The signal-to-noise ratio (SNR) was varied by

changing the amplitude difference between levels (c),

while keeping the SD of the added gaussian noise (rnoise)

constant. With an SNR of 1.0 (c = 1, rnoise = 1) the

algorithm was accurate in determining the levels. When the

noiseless record was overlapped with the algorithm levels,

there was a close agreement in both amplitude and timing

(Fig. 3b). Similarly, there was a close agreement between

the record’s all-points pd and the pd reconstructed from the
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algorithm levels (Fig. 3c, see ‘‘Methods’’). From the

reconstructed pd it was clear that the algorithm calculated

more than two levels. When the amplitude of the algorithm

levels was plotted against their lengths (Fig. 3d), it became

apparent that each molecule level was approximated by

four algorithm levels, one of fairly accurate length and

amplitude and three of much shorter length but still of

accurate amplitude (‘‘ghost’’ levels).

When the SNR was reduced to 0.5 (c = 0.5, rnoise = 1)

the TON algorithm was still competent at assigning level

amplitudes, though it was a little less competent at the timing

of the levels (Fig. 3b). This was despite the fact that the

molecule levels were not distinguishable in the all-points pd

(Fig. 3c). With SNR reduced further to 0.3 (c = 0.3,

rnoise = 1) the algorithm failed to assign accurate levels. A

single algorithm level was calculated with an amplitude

midway between the molecule levels, along with several

ghost levels across a spread of amplitudes (Fig. 3c, d).

Simulated Data: Fast Kinetics

In the last example the molecule’s kinetics were slower than

the temporal thresholds of the algorithm (sSP = 100 ms,

NT(initiating) and LT(extending) = 20 ms). These temporal

thresholds are minimal time periods over which the algo-

rithm can reliably establish normality (see ‘‘Methods’’).

However, many molecules have kinetics which are much

faster than this. We looked at two possibilities: (1) what

happens if the temporal parameters are reduced and (2) what

happens as the timescale of the molecule’s kinetics approa-

ches the timescale of the temporal thresholds. To do this we

simulated a two-state molecule as before (c = 1, rnoise = 1)

= 1.0 pA = 0.5 pA

t (s)

a

b

c

d

length (ms)

p

length (ms)length (ms)

amplitudeamplitude amplitude

pp

am
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itu
de
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itu
de
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pl

itu
de

= 0.3 pA

Fig. 3 Effect of varying signal-to-noise ratio on the performance of

the TON algorithm. Algorithm parameters were NT(initiating) = 200

samples, LT(extending) = 20 ms, rT = 0.3 and qT = 0.95. Simulation

parameters were sSP = 100 ms, rnoise = 1.0, c = 1.0, 0.5 or 0.3 (left
to right). a Low-pass-filtered (0.5 kHz cutoff) record. b Record

without added noise, with algorithm levels superimposed (thick lines).

c Probability densities (pds). Noisy thin line, all-points pd

(Dbin = 0.01); dotted lines, reconstructed pds for each algorithm

level; thick smooth line, sum of reconstructed pds. d Plots of

algorithm level amplitude against length. Dotted lines indicate the

two molecule levels
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but speeded the molecule’s kinetics (sSP = 1–20 ms) and

reduced the temporal thresholds (NT(initiating) = 50 samples at

10 kHz sampling frequency = 5 ms, LT(extending) = 2 ms).

With sSP = 15 or 5 ms, the TON algorithm was fairly

accurate in assigning both level amplitude and timing

(Fig. 4). However, with sSP = 3 ms (just shorter than

NT(initiating) and just longer than LT(extending)), there were

four algorithm levels of substantial length, two near the

amplitude of the molecule levels and two midway in

amplitude between the molecule levels.

Simulated Data: Multiple Levels

Many single-molecule recordings show multiple levels. We

simulated a recording consisting of seven levels, with CPs

between any two levels. As with the first simulation

(Fig. 3), the amplitude difference between levels (c) was

varied while keeping the gaussian noise (rnoise) constant.

With an SNR of 1.0 (c = 1, rnoise = 1) the algorithm

accurately assigned both level amplitude and timing

(Fig. 5b). In fact, there was only one ghost level (Fig. 5d).

With an SNR of 0.5 (c = 0.5, rnoise = 1) most algorithm

levels were still accurate, despite the fact that the molecule

levels could no longer be distinguished in the all-points pd

(Fig. 5c). There were still relatively few ghost levels. With

an SNR of 0.3 (c = 0.3, rnoise = 1) the accuracy of the

algorithm began to fail. Though at least three molecule

levels (0, 0.6 and 0.9) were fairly approximated by the

algorithm, the other molecule levels had no equivalent

algorithm level. Instead, there was a long algorithm level at

1.67 (midway between the molecule levels of 1.5 and 1.8)

and multiple ghost levels (Fig. 5d).

Real Data

We tested the TON algorithm with patch-clamp records of

two types of ion channel expressed by interstitial cells of

Cajal, the pacemaker cells in the gastrointestinal tract.

Transient-outward currents (also known as A-type currents)

reflect the expression of voltage-dependent potassium

oc = 15 ms oc = 5 ms
oc = 3 ms

t (s)

a

b

c

d

length (ms)

p

length (ms)length (ms)

amplitudeamplitude amplitude

pp

am
pl

itu
de

am
pl

itu
de

am
pl

itu
de

Fig. 4 Effect of fast molecule kinetics on the performance of the TON

algorithm. Algorithm parameters were NT(initiating) = 50 samples,

LT(extending) = 2 ms, rT = 0.3 and qT = 0.95. Simulation parameters

were sSP = 15, 5 or 3 ms (left to right); rnoise = 1.0; and c = 1.0.

a Low-pass-filtered (0.5 kHz cutoff) record. b Record without added

noise, with algorithm levels superimposed (thick lines). c Probability

densities (pds). Noisy thin line, all-points pd (Dbin = 0.01); dotted lines,

reconstructed pds for each algorithm level; thick smooth line, sum of

reconstructed pds. d Plots of algorithm level amplitude against length.

Dotted lines indicate the two molecule levels
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channels of the Kv1–Kv5 family (Parsons and Huizinga

2010). Some of the recordings of these channels showed

quite fast kinetics, so we used the same TON parameters as

for the fast simulated molecules (Fig. 4) (NT(initiating) = 50

samples at 10 kHz sampling frequency, LT(extending) = 2 ms,

qT = 0.95, rT = 0.3 pA). The algorithm performed well for

channels that displayed both fast and slow kinetics (upper

and lower panels of Fig. 6a). The algorithm levels appeared

appropriate in comparison to the channel records (Fig. 6a),

and the reconstructed pds closely approximated the all-

points pds (Fig. 6b). In plots of algorithm level amplitude

against length, the longer levels approximated a level inter-

val of 1.3 pA for both slow and fast channels (Fig. 6c). There

were also a number of ghost levels spread across a range of

amplitudes.

Maxichannels have a large conductance (over 200 pS)

with numerous subconductance states (levels) and perme-

ability to both anions and cations (Parsons et al. 2012;

Parsons and Sanders 2008). A recording of a single

maxichannel showed multiple subconductance states

(Fig. 7a). Several peaks could be distinguished in the all-

points pd (Fig. 7e), but many of these appeared too broad

or asymmetric to be attributable to a single level. The TON

algorithm broke these peaks up into several levels (a–h)

and the reconstructed pd approximated well the all-points

pd, except for the c level which was underestimated by the

algorithm (Fig. 7e). When the channel record was over-

lapped with the algorithm levels, the algorithm levels

appeared to be fair approximations of the channel levels

(Fig. 7b–d).

Discussion

We have described an algorithm that integrates statistical

CPD and gaussian mixture modeling. Some advantages

spring from just this integration. The number of input

parameters in TON is not negligible but would undoubtedly

= 1.0 pA = 0.5 pA = 0.3 pA

length (ms)

p

t (s)

length (ms)length (ms)

a

b

c

d
amplitudeamplitude amplitude

pp

am
pl

itu
de

am
pl

itu
de

am
pl

itu
de

Fig. 5 Effect of varying signal-to-noise ratio on the performance of

the TON algorithm with multiple levels. Algorithm parameters were

NT(initiating) = 100 samples, LT(extending) = 5 ms, rT = 0.3 and

qT = 0.95. Simulation parameters were soc = 100 ms, rnoise = 1.0

and c = 1.0, 0.5 or 0.3 (left to right). a Low-pass-filtered (0.5 kHz

cutoff) record. b Record without added noise, with algorithm levels

superimposed (thick lines). c Probability densities (pds). Noisy thin
line, all-points pd (Dbin = 0.01); dotted lines, reconstructed pds for

each algorithm level; thick smooth line, sum of reconstructed pds.

d Plots of algorithm level amplitude against length. Dotted lines
indicate the molecule levels
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be larger with separate clustering and CPD algorithms. Also

the output of TON is integrated, unlike clustering and CPD in

series. For instance, if we started with a CPD and then used

the SP amplitudes for gaussian mixture modeling, would the

resulting distributions be the same as if we performed mix-

ture modeling directly on the samples of those SPs or of all

the samples? Certainly not if some SPs have non-normal

distributions because the CPD did not detect a CP (Schroder

et al. 2004). With TON the match between level and SP

distributions is inherent in the algorithm.

Purely as a CA, TON also has advantages. With optimi-

zation clustering the number of clusters has to be chosen a

priori. If we have a kinetic model in mind (e.g., regularly

spaced subconductances) or the recording appears very

simple (e.g., just two levels), then this is not a problem.

However, if this is not so, we have to assess the number of

clusters either subjectively (by eyeballing the data) or iter-

atively through a number of choices, comparing the statis-

tical plausibility of each outcome (Djuric et al. 1996;

McManus et al. 1988; Sansom et al. 1989), which introduces

further parameters. Also, with many mixture model algo-

rithms, initial guesses have to be made for the parameters of

each cluster’s distribution if the algorithm is to settle on the

optimal fit, rather than some local minima. Again, with a

model or simple data this is not a big problem, but otherwise

we have to resort to subjective methods or other algorithms

which introduce further parameters. TON is unique for a

mixture model algorithm in that it itself determines the

number of clusters. This is a tremendous advantage with

complex recordings such as for the maxichannel.

The disadvantage of TON as a gaussian mixture model

algorithm is its production of ghost and other small

I (pA)

)
Ap(I

pp

)
Ap(I

t (s)

)
Ap(I

I (pA)

length (ms)length (ms)

)
Ap(I

a

b

c

t (s)

Fig. 6 Performance of the TON algorithm with two recordings of

transient-outward potassium channels. Both records were 21.6 s long,

with a 5 kHz sampling rate. Algorithm parameters were NT(initiating) =

50 samples, LT(extending) = 2 ms, rT = 0.3 pA and qT = 0.95. a Low-

pass-filtered (0.5 kHz cutoff) channel records with algorithm levels

superimposed (thick lines). Upper record had four channels with

relatively fast kinetics. Lower record also had four channels but with

relatively slow kinetics. b Probability densities (pds). Left pane-
l = upper record, right panel = lower record. Noisy thin line,

all-points pd (Dbin = 0.01 pA); dotted lines, reconstructed pds for

each algorithm level; thick smooth line, sum of reconstructed pds.

c Plots of algorithm level amplitude against length. Left panel =

upper record, right panel = lower record. Dotted lines are spaced

1.3 pA apart
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clusters. That is, TON has a tendency to overfit the data.

Purely as a CPD, TON is not the best. The requirement for

a large initiating SP to accurately establish a normal dis-

tribution (larger than a window required to accurately

establish variance in other statistical CPDs) makes TON

inadequate for data where transition rates between levels

are quick compared to the sampling rate. TON can also be

confused by fast transition rates when the distribution of

two levels approximates normality (Fig. 4). A remedy for

this may be possible by combining TON with another

CPD—extension is stopped not just by non-normality but

also by some other CP threshold.

I (pA)

p

)
A p( I

a

b

e

t (s)

t (s)

t (s)

t (s)

)
Ap(I

)
Ap(I

)
Ap (I

c

d

(b)(c)
(d)

Fig. 7 Performance of the TON

algorithm with a recording of a

maxichannel. The record was

21.6 s, long with a 10 kHz

sampling rate. Algorithm

parameters were

NT(initiating) = 100 samples,

LT(extending) = 1 ms,

rT = 0.7 pA and qT = 0.95.

a Low-pass-filtered (0.5 kHz

cutoff) channel record.

b–d Short sections of this record

with algorithm levels

superimposed (thick lines).

e Probability densities (pds).

Noisy thin line, all-points pd

(Dbin = 0.01 pA); dotted lines,

reconstructed pds for each

algorithm level; thick smooth
line, sum of reconstructed pds.

Main levels are labeled a to h
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The main objective of TON was to fuse analysis by CPD

and mixture modeling into one simple algorithm that would

work with complex single-molecule data. The algorithm

does this admirably in the basic implementation presented.

Undoubtedly, it could be improved with further modifica-

tions, for example, by introducing other CPD methods.

However, here we wanted to demonstrate the basic concept

of integration of CPD with mixture modeling.
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